Package: tools4uplift 1.0.1

tools4uplift: Tools for Uplift Modeling

Uplift modeling aims at predicting the causal effect of an action such as a marketing campaign on a particular individual. In order to simplify the task for practitioners in uplift modeling, we propose a combination of tools that can be separated into the following ingredients: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and, v) model validation. For more details, please read "Belbahri, Murua, Gandouet, Partovi Nia - Uplift Regression : The R Package tools4uplift".

Authors:Mouloud Belbahri, Olivier Gandouet, Alejandro Murua, Vahid Partovi Nia

tools4uplift_1.0.1.tar.gz
tools4uplift_1.0.1.zip(r-4.5)tools4uplift_1.0.1.zip(r-4.4)tools4uplift_1.0.1.zip(r-4.3)
tools4uplift_1.0.1.tgz(r-4.4-any)tools4uplift_1.0.1.tgz(r-4.3-any)
tools4uplift_1.0.1.tar.gz(r-4.5-noble)tools4uplift_1.0.1.tar.gz(r-4.4-noble)
tools4uplift_1.0.1.tgz(r-4.4-emscripten)tools4uplift_1.0.1.tgz(r-4.3-emscripten)
tools4uplift.pdf |tools4uplift.html
tools4uplift/json (API)

# Install 'tools4uplift' in R:
install.packages('tools4uplift', repos = c('https://belbahrim.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/belbahrim/tools4uplift/issues

Datasets:
  • SimUplift - Synthetic data for uplift modeling

On CRAN:

3.55 score 71 scripts 301 downloads 17 exports 35 dependencies

Last updated 3 years agofrom:96d5ca0dba. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winWARNINGNov 05 2024
R-4.5-linuxWARNINGNov 05 2024
R-4.4-winWARNINGNov 05 2024
R-4.4-macWARNINGNov 05 2024
R-4.3-winWARNINGNov 05 2024
R-4.3-macWARNINGNov 05 2024

Exports:barplot.PerformanceUpliftBestFeaturesBinUpliftBinUplift2dDualUpliftInterUpliftLassoPathlines.PerformanceUpliftPerformanceUpliftplot.PerformanceUpliftpredict.BinUpliftpredict.DualUpliftpredict.InterUpliftQiniAreaqLHSSplitUpliftUpliftPerCat

Dependencies:BiasedUrnclicodetoolsdeldirdplyrfansiforeachgenericsglmnetglueinterpiteratorsjpeglatticelatticeExtralhslifecyclemagrittrMASSMatrixpillarpkgconfigpngR6RColorBrewerRcppRcppEigenrlangshapesurvivaltibbletidyselectutf8vctrswithr

Readme and manuals

Help Manual

Help pageTopics
Uplift barplotbarplot.PerformanceUplift
Qini-based feature selectionBestFeatures
Univariate quantizationBinUplift
Bivariate quantizationBinUplift2d
Two-model estimatorDualUplift DualUplift.default DualUplift.formula print.DualUplift summary.DualUplift
Interaction estimatorInterUplift InterUplift.default InterUplift.formula
LASSO path for the penalized logistic regressionLassoPath
Qini curvelines.PerformanceUplift
Performance of an uplift estimatorPerformanceUplift print.PerformanceUplift
Qini curveplot.PerformanceUplift
Prediction from univariate quantizationpredict.BinUplift
Predictions from a two-model estimatorpredict.DualUplift
Predictions from an interaction estimatorpredict.InterUplift
Qini coefficientQiniArea QiniArea.default QiniArea.PerformanceUplift
Qini-based uplift regressionqLHS
Synthetic data for uplift modelingSimUplift
Split data with respect to uplift distributionSplitUplift
Uplift barplot for categorical variablesUpliftPerCat